Optically active transition-metal complexes II. Rhenium complexes with the optically active cyclopentadienyl ligand PCp: X-ray structures of the exo and endo isomers of $\mathrm{PCpRe}(\mathrm{CO})_{3}$ and of the derivative $\mathrm{PCpReNO}\left(\mathrm{CH}_{3}\right) \mathrm{PPh}_{3}$

W.H. Bosch ${ }^{\text {b }}$, U. Englert ${ }^{\text {a }}$, B. Pfister ${ }^{\text {a }}$, R. Stauber ${ }^{\text {b }}$, A. Salzer ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Institut fuir Anorganische Chemie der RWTH Aachen, D-52056 Aachen, Germany
${ }^{\mathrm{b}}$ Anorganisch-chemisches Institut der Universität Zürich, Zürich, Switzerland

Received 6 April 1995

Abstract

The synthesis of the optically active exo and endo isomers of $\mathrm{PCpRe}(\mathrm{CO})_{3}[\mathrm{PCp}=$ ' p inene-fused cyclopentadienyl'] is described. The yield and relative ratio of the two isomers is strongly dependent on solvent, temperature and the various starting materials $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{~L}_{2} \mathrm{X}$ $\left[\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{CO}, \mathrm{THF}\right.$, pyridine, $\left.\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DME}\right]$ as well as the derivative $\mathrm{MPCp}[\mathrm{M}=\mathrm{Li}, \mathrm{Tl}]$ used. Both isomers have been characterized by crystal structure analyses. The exo isomer undergoes a sequence of ligand substitutions to give the 'chiral-at-rhenium' derivatives [$\left.\mathrm{PCpReNO}(\mathrm{CO}) \mathrm{PPh}_{3}\right] \mathrm{BF}_{4}$ and $\mathrm{PCpReNO}\left(\mathrm{CH}_{3}\right) \mathrm{PPh}_{3}$ as a $1: 1$ inseparable mixture of diastereomers. The latter compound has also been characterized by an X -ray structure analysis with both diastereomers occupying unique positions in the crystal lattice.

Keywords: Optically active ligands; Rhenium; Cyclopentadienyl; Crystal structure; NMR spectroscopy; IR spectroscopy

1. Introduction

During the past 15 years the chemistry of the chiral, substitution-labile dichloromethane complex [$\left(\eta^{5}-\right.$ $\left.\mathrm{Cp}) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{ClCH}_{2} \mathrm{Cl}\right)\right]^{+} \mathrm{BF}_{4}^{-}$has been extensively studied by Gladysz and coworkers [1-17]. The complex serves as a functional equivalent of the chiral, 16 -valence-electron Lewis acid $\left[\left(\eta^{5}-\mathrm{Cp}\right) \operatorname{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+}$and has been the object of considerable mechanistic investigation. Generated by protolysis of the methyl complex $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane at $-78^{\circ} \mathrm{C}$, the complex exhibits overall retention at rhenium after reaction with various neutral donor ligands [4,5]. However, starting from racemic ($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)$ and prochiral nucleophiles L , two diastereomeric racemates can be ultimately obtained as the corresponding Lewis base

[^0]adducts $\left[\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\right]^{+} \mathrm{BF}_{4}^{-}$. Although diastereoselectivity was high in many cases, especially after equilibration at $95^{\circ} \mathrm{C}$ in chlorobenzene [17], employment of a rhenium complex with an optically active cyclopentadienyl ligand as the starting material could provide higher degrees of binding selectivities, even at ambient temperature. Furthermore, mechanistic studies, such as those of equilibration processes, would be facilitated, as they could now be executed by NMR analysis (preferably ${ }^{31} \mathrm{P}$ NMR), all possible isomers being diastereomers.
The optically active pinane-related cyclopentadienyl ligand, $(1 R, 8 R)-(-)-9,9$-dimethyltricyclo[6.1.1.0. $\left.{ }^{2,6}\right]$ -deca-2,5-dienyl (PCp^{-}; Fig. 1), initially synthesized by Paquette et al. [18], represents a promising tool in the synthesis and characterization of chiral transition metal complexes.

Derived from ($1 R, 8 R$)-(-)-nopol, a compound of the 'chiral pool', the optically pure diene PCpH can be prepared from relatively cheap starting materials in good overall yields $[19,20]$. As the chiral dienyl ligand PCp^{-}possesses two non-equivalent π surfaces, it can

Fig. 1. The PCP^{-}anion and its numbering scheme.
be stereoselectively complexed by $\mathrm{Ti}^{1 /}, \mathrm{Fe}^{0}$ and Ru^{0} reagents. LiPCp reacts with $\mathrm{Ti}^{1 /}$ reagents with high π-facial selectivity, which inverts with variation of temperature $[21,22]$. Treatment of PCpH , however, with $\mathrm{Fe}(\mathrm{CO})_{5}$ or $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in the presence of the hydrogen acceptor norbornene affords the isostructural complexes $\left[\mathrm{PCpM}(\mathrm{CO})_{2}\right]_{2}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru})$, in which the metal is coordinated exclusively to the sterically less hindered exo face of PCp [18,23,24].

The aim of our research was to investigate whether diastereomerically pure rhenium tricarbonyl complexes $\mathrm{PCpRe}(\mathrm{CO})_{3}$ could be prepared from this ligand by face-selective complexation and to find out in which way diastereomers, generated by substitution of ligands to create a chiral pseudo-tetrahedral environment at the rhenium centre, could be separated. In addition to that, we hoped to gain better insight into those organometallic reaction mechanisms that are not easily deducible from reactions of racemic mixtures.

2. Results and discussion

2.1. Syntheses and investigations of the π-facially selective formation of exo- and endo- $\left.\eta^{5}-\mathrm{PCp}\right) \mathrm{Re}(\mathrm{CO})_{3}(1 a$ and 1b)

In our initial attempts at synthesizing (η^{5} $\mathrm{PCp}) \operatorname{Re}(\mathrm{CO})_{3}$ by general literature methods [25], starting from $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ and TIPCp in n-hexane, toluene, THF or $\mathrm{Et}_{2} \mathrm{O}$, we always obtained mixtures of exo- $\left(\eta^{5}-\right.$ $\mathrm{PCp}) \operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 a})$ and endo- $\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 b})$ in
modest yields (about 50%) with low diastereomeric excesses of 1a (de: $30 \%-36 \%$) (Scheme 1).

Variation of temperature produced no significant difference in the π-facial selectivity of the reaction, but the yield decreased from 50% at $25^{\circ} \mathrm{C}$ to 35% at $-78^{\circ} \mathrm{C}$. One of the main hindrances to increasing the yield is the competitive homolysis of the $\mathrm{Re}-\mathrm{C} \sigma$-bond of the $\left(\eta^{1}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{CO})_{5}$ intermediate, which is formed directly after substitution of chloride by the PCp anion [26]. This intermediate, instead of losing two CO ligands and forming the final product $\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{CO})_{3}$, decomposes by homolysis of the $\operatorname{Re}-\mathrm{C} \boldsymbol{\sigma}$-bond and generation of radical products, some of which recombine to give $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ as a side-product. Therefore, employment of $\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{THF}) \mathrm{Cl}\right]_{2}$ as a precursor, with labile THF ligands which can readily be displaced, should facilitate the overall process and suppress homolysis [27-30]. Indeed, treatment of [Re(CO) ${ }_{3}(\mathrm{THF})-$ Cl_{2} with TIPCp in THF at $0^{\circ} \mathrm{C}$ increased the yield to 85%. Unfortunately, the diastereomeric excess of $\mathbf{1 a}$ decreased to 4%. Similar experiments, performed at various temperatures and utilizing LiPCp instead of TIPCp, failed to produce any enhancement. While suppressing the homolysis of the $\operatorname{Re}-\mathrm{C} \sigma$-bond, and giving yields of product similar to the unsubstituted Cp ligand [25], this method failed to show any significant diastereoselectivity. We assumed that stereochemical control of the complexation of the PCp^{-}anion should only be possible if monomeric rhenium starting materials with bulky ligands are employed. We therefore attempted to achieve better results by employment of stable monomeric complexes like $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~L}{ }_{2} \mathrm{Cl}(\mathrm{L}=$ pyridine, $\mathrm{CH}_{3} \mathrm{CN}$, DME), where the two ligands L are bulkier than CO which might favour π-facial selectivity. With $\mathrm{L}=$ pyridine [31] and $\mathrm{CH}_{3} \mathrm{CN}$ [32], diastereomeric excesses indeed increased to 80%; yields however decreased to 35%. As the N -containing ligands, pyridine and $\mathrm{CH}_{3} \mathrm{CN}$, are bound much more strongly to rhenium in $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~L}_{2} \mathrm{Cl}$ than CO , homolysis of the $\mathrm{Re}-\mathrm{C}$ σ-bond in $\left(\eta^{1}-\mathrm{PCp}\right) \mathrm{Re}(\mathrm{CO})_{3} \mathrm{~L}_{2}$ became again a competitive reaction. The use of $\mathrm{L}=\mathrm{DME}$ seemed to afford a compromise, for both good yields and modest diastereomeric excess could be achieved. Surprisingly, reversal of π-facial selectivity occurred in the case of $L=$

Scheme 1.

Table 1
Ratios and yields of $\mathbf{1 a}$ and $\mathbf{1 b}$

L	M	Yield (\%)	$\mathbf{1 a} / \mathbf{1 b}$
pyridine	Li	40	$33: 67$
pyridine	Tl	35	$90: 10$
$\mathrm{CH}_{3} \mathrm{CN}$	Li	35	$80: 20$
$\mathrm{CH}_{3} \mathrm{CN}$	Tl	40	$55: 45$
DME	Li	76	$64: 36$
DME	Tl	80	$37: 63$
THF	Li	75	$53: 47$
THF	Tl	85	$52: 48$
CO	Li	45	$65: 35$
CO	Tl	50	$68: 32$

pyridine and DME, depending on whether LiPCp or TIPCp was employed. In no case did we discover any reversal of selectivity with variation of temperature, as described by Paquette and coworkers $[22,33,34]$. Best results were obtained when the reactions were performed at $0^{\circ} \mathrm{C}$. Yields and ratios of $\mathbf{1 a} / \mathbf{1 b}$ are listed for all reactions at $0^{\circ} \mathrm{C}$ in Table 1 .

Diastereomeric excesses were determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks assigned to the methyl groups of $\mathbf{1 a}$ ($\delta: 1.40$ and 0.72 ppm) and $\mathbf{1 b}$ ($\delta: 1.35$ and 1.17 ppm). The chemical shifts of these resonances show a larger difference $\Delta \delta$ for $\mathbf{1 a}$ than for $\mathbf{1 b}$, as a result of differential diamagnetic anisotropy effects of the Cp ring-current. Furthermore, $\mathbf{1 a}$ and $\mathbf{1 b}$ exhibit the same IR absorptions in the carbonyl region and cannot therefore be distinguished by IR spectroscopy. ${ }^{13} \mathrm{C}$ NMR spectra of both $\mathbf{1 a}$ and $\mathbf{1 b}$ show only one single resonance for the CO ligands with identical chemical shifts for 1a and 1 lb .

Separation of $\mathbf{1 a}$ and $\mathbf{1 b}$ has so far only been achieved by fractional crystallization in n-hexane at $-30^{\circ} \mathrm{C}$, producing colourless crystalline needles as single crystals. Both diastereomers were structurally characterized by single-crystal X-ray diffraction (Section 2.4).

2.2. Preparation of $R_{R e}, S_{R e}-$ exo- $\left(\eta^{5}-P C p\right) R e(N O)$ -

 $\left.\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{3}\right)(\mathbf{5 a}, 5 \boldsymbol{b})$In line with the work of Gladysz et al. [35], exo- $\left(\eta^{5}-\right.$ $\mathrm{PCp}) \operatorname{Re}(\mathrm{CO})_{3}$ (1a) was treated with freshly prepared
NOBF_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to provide exo- $\left[\left(\eta^{5}-\right.\right.$ $\left.\mathrm{PCp}) \mathrm{Re}(\mathrm{NO})(\mathrm{CO})_{2}\right]^{+} \mathrm{BF}_{4}^{-}$(2) as a yellow solid in excellent yield after work-up (Scheme 2). The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 exhibits two resonances at 182.5 and 182.3 ppm assigned to its two diastereotopic CO ligands.

Treatment of 2 in $\mathrm{CH}_{3} \mathrm{CN}$ with iodosylbenzene as a mild^{1} oxidizing agent resulted in the smooth formation of $R_{\mathrm{Re}}, S_{\mathrm{Re}}$ exo- $\left[\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{NO})(\mathrm{CO})\left(\mathrm{NCCH}_{3}\right)\right]^{+} \mathrm{BF}_{4}^{-}$ ($\mathbf{3 a}, \mathbf{3 b}$) $[2,35]$. The course of the reaction can easily be monitored by IR. After removal of solvent, crude 3a + 3b was refluxed in 2-butanone with excess of PPh_{3} to afford the desired product $R_{\mathrm{Re}}, S_{\mathrm{Re}}$ exo-[($\left.\eta^{5}-\mathrm{PCp}\right)$ $\left.\mathrm{Re}(\mathrm{NO})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}^{-}(4 \mathrm{a}, 4 \mathrm{~b})$ in good overall yield (Scheme 2). ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR analysis of $\mathbf{4 a}+\mathbf{4 b}$ indicated that the ratio of diastereomers $R_{\mathrm{Re}} / S_{\mathrm{Re}}$, owing to the newly generated chiral centre at rhenium, was about $1: 1$. Reduction of $\mathbf{4 a}+\mathbf{4 b}$ could readily be performed in THF by addition of NaBH_{4} at ambient temperature. Purification by chromatography and subsequent crystallization from a hot saturated n -hexane solution, which was slowly cooled to room temperature, provided red single crystals of $R_{\mathrm{Re}}, S_{\mathrm{Re}}-$ exo- $\left(\eta^{5}-\right.$ $\mathrm{PCp}) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(5 a, 5 b)$ in 80% yield (Scheme 3).

The ratio of diastereomers $R_{\mathrm{Re}} / S_{\mathrm{Re}}=1: 1$ was again determined by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra. The X-ray structure of $\mathbf{5 a}, \mathbf{5 b}$ shows that both diastereomers cocrystallize in a $1: 1$ ratio (Section 2.4). Fractional crystallization is therefore not a suitable method for separation of the diastereomers in this case.

2.3. Formation and stability of $R_{R e}, S_{R e}$-lexo- $\left(\eta^{5}\right.$ $\mathrm{PCp}) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{ClCD}_{2} \mathrm{Cl}^{+} \mathrm{BF}_{4}^{-}(\mathbf{6 a}, \mathbf{6} \mathbf{b})\right.$

According to Gladysz et al., methyl rhenium complexes such as $\mathbf{5 a}$ or $\mathbf{5 b}$ can readily be converted to chiral, pyramidal, solvent-stabilized Lewis acids, which are of stable configuration in dichloromethane or chlorobenzene at low temperatures [5]. If treated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}, \mathbf{5 a}, \mathbf{5 b}$ were converted into $R_{\mathrm{Re}}, S_{\mathrm{Re}}-$ exo $-\left[\left(\eta^{5}-\mathrm{PCp}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left(\mathrm{ClCD}_{2} \mathrm{Cl}^{+} \mathrm{BF}_{4}^{-}(\mathbf{6 a}, \mathbf{6 b})\right.$ (Scheme 3). This reaction

Scheme 2.

Scheme 3.
was performed in an NMR tube and immediately analyzed by ${ }^{31} \mathrm{P}$ NMR spectroscopy at $-80^{\circ} \mathrm{C}$. Two resonance peaks ($\delta: 13.4$ and 11.9 ppm) due to two diastereomers (ratio of integration: $R_{\mathrm{Re}} / S_{\mathrm{Re}} \sim 1: 1$) were observed. On stepwise warming to $-20^{\circ} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectra showed only two resonances, which shifted slightly to higher field, over the entire temperature range. Above $-20^{\circ} \mathrm{C}$ decomposition of $6 \mathbf{a}$ and $\mathbf{6 b}$ occurred. The relative stability of the 16 -valence-electron cations ($6 \mathbf{a}, 6 \mathbf{b}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to $-20^{\circ} \mathrm{C}$ suggested that $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ acts as a weakly coordinating ligand to the metal centre. In order to answer the question of whether decomposition or inversion of $\mathbf{6 a}, \mathbf{6 b}$ occurs faster in a variation-of-temperature NMR experiment, it would be necessary to separate the two diastereomers 5 a and 5 b and investigate only one of them after protolysis as described above. We currently cannot distinguish whether $6 a$ and $6 b$ are configurationally stable over the whole temperature range, or whether a slow equilibration between the R_{Re} and S_{Re} isomer takes place. Our present efforts are therefore focused on preparing pure optically active $\mathbf{5 a}$ or $\mathbf{5 b}$ in good overall yield.

Fig. 2. Molecular structure and crystallographic numbering scheme for exo- $\mathrm{PCpRe}(\mathrm{CO})_{3}$ (1a).

2.4. X-ray structures of $\mathbf{1 a}, \mathbf{1 b}, \mathbf{5 a}$ and $\mathbf{5 b}$

Complex 1a has the appearance of a normal cyclopentadienyl half-sandwich transition metal complex (Fig. 2). The angles (O) $\mathrm{C}-\mathrm{Re}-\mathrm{C}(\mathrm{O})$ deviate only slightly from 90° and confirm the octahedral coordination at the rhenium atom. The dihedral angle between the PCp π-plane and the plane defined by the three carbon atoms of the CO ligands is 2.0° and is thus hardly significant. This is in contrast to the observations on related pentamethylcyclopentadienyl complexes of the diolefin ligand nopadiene [20] and methylnopadienyl [36], where a pronounced tilt of the two ligand planes was observed, most likely due to repulsion between the methylene bridge of the pinene unit and the second ring ligand. This difference may be due to the fact that the three carbonyl ligands have a considerably smaller cone angle than a pentamethylcyclopentadienyl ring.

The $\mathrm{Re}-\mathrm{C}$ distances to the cyclopentadienyl ring vary within the limits 2.301 and $2.359 \AA$. As expected, the $\mathrm{Re}-\mathrm{C}$ bond lengths for the three CO ligands are all identical. Surprisingly the X-ray structure of diastereomer 1b exhibits no significant differences in its appearance apart from the inverse aliphatic pinene part of

Fig. 3. Molecular structure and crystallographic numbering scheme for endo-PCpRe(CO) ${ }_{3}$ (1b).
the PCp ligand (Fig. 3). The angle between the PCp π-plane and the plane defined by the carbon atoms of the carbonyl ligands is 2.6° and differs slightly from that of 1a. Apparently the three CO ligands can avoid steric interaction with the methyl groups by rotation (turnstile mechanism). In solution, however, the system is dynamic and only one NMR resonance assigned to the CO ligands can be observed in the ${ }^{13} \mathrm{C}$ NMR spectrum at ambient temperatures. The (O)C-Re-C(O) angles vary within the limits 86° and 92°, and the Re-C
distances to the cyclopentadienylring range from $2.28 \AA$ to $2.37 \AA$.

For the complexes $\mathbf{5 a}$ and $\mathbf{5 b}$, we find the rare case that both diastereomers cocrystallize in a ratio of $1: 1$ in the unit cell (Fig. 4). The solid-state structure analysis shows the orientation of the bulky PPh_{3} group as far as possible away from the sterically demanding pinene part of the PCp ligand [Fig. 5 shows the situation for the $R_{\text {Re }}$ isomer (5a)]. The exchange of the position of the small NO and methyl ligand, which are well shielded below

Fig. 4. Molecular structures and crystallographic numbering schemes for $R_{\mathrm{Re}^{-}}$exo- $\mathrm{PCpRe}\left(\mathrm{NO}^{\mathrm{NO}}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)$ (5a) and $S_{\mathrm{Re}}-$ exo$\mathrm{PCpRe}(\mathrm{NO})\left(\mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)(5 \mathrm{~b})$.

Fig. 5. Top view for $R_{\text {Re }}$-exo- $\mathrm{PCpRe}\left(\mathrm{NO}^{(}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)(5 \mathrm{a})$.
the π-plane, does not appear to have any great influence on the overall geometry of the complexes, which is largely dominated by the bulkier ligands PPh_{3} and PCp .

The $\mathrm{Re}-\mathrm{N}$ and $\mathrm{Re}-\mathrm{CH}_{3}$ distances are significantly longer for the $S_{\mathrm{Re}}(\mathbf{5 b})$ than for the R_{Re} diastereomer (5a). For 5a, bond angles at the metal centre deviate to

Table 2
Summary of crystal data and details of the intensity collection and refinement for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{5 a} \mathbf{5} \mathbf{5} \mathbf{b}$

	1a	1b	5a/5b
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Re}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Re}$	$\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NOPRe}$
Molecular weight ($\mathrm{g} \mathrm{mol}^{-1}$)	429.49	429.49	652.79
Colour, habit	colourless parallelepiped	colourless needles	red parallelepiped
Crystal size (mm^{3})	$0.8 \times 0.5 \times 0.2$	$0.1 \times 0.1 \times 0.5$	$0.2 \times 0.2 \times 0.15$
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	P2, 2121 (No. 19)	P21 (No. 4)	$P 2_{1}$ (No. 4)
$a(\AA)$	7.109(2)	7.039(8)	$9.074(1)$
b (\AA)	12.019(3)	9.156(8)	18.168(3)
$c(\AA)$	16.128(4)	10.894(9)	16.159(2)
$\left.\beta{ }^{(}\right)$		92.20(9)	90.09(1)
$V\left(\AA^{3}\right)$	1378.0(6)	702.0(1)	2664.0(1)
Z	4	2	4
Density (calc.) ($\mathrm{g} \mathrm{cm}^{-3}$)	2.070	2.035	1.628
$F(000)$	816	408	1296
Monochromator	graphite	graphite	graphite
Absorption coefficient, $\mu\left(\mathrm{cm}^{-1}\right)$	89.38	87.85	25.21
Radiation, λ (\AA)	Mo K α (0.71073)	Mo K α (0.71073)	Ag K α (0.56087)
Temp. (K)	200	253	293
Scan mode (2θ range) (${ }^{\circ}$)	ω (4-58)	$\omega(6-50)$	$\omega-2 \theta(0-48)$
No. of unique rflns.	2096	2316	10213
N_{0} (No. of obsd. rflns.)	$2054(F>6.0 \sigma(F)$)	$1934(I>2.5 \sigma(I)$)	$5619(1>2.0 \sigma(I)$)
N_{p} (No. of params. refined)	173	171	630
Weighting scheme		$w^{-1}=\sigma^{2}\left(F_{0}\right)$	
R	0.032	0.043	0.043
R_{w}	0.044	0.052	0.047
Residual fluctuation			
in final DF map (e \AA^{-3})	2.2	3.4	3.3

Table 3
Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) of exo- $\mathrm{PCpRe}(\mathrm{CO})_{3}$ (1a) with estimated standard deviations in parentheses

Atom	x	y	z	$U_{\text {eq }}{ }^{a}$
Re	$0.8882(1)$	$0.7799(1)$	$0.2083(1)$	$0.016(1)$
O1	$1.1601(15)$	$0.6396(7)$	$0.3142(6)$	$0.034(3)$
O2	$1.0164(20)$	$0.6783(9)$	$0.0440(6)$	$0.058(4)$
O3	$1.1846(14)$	$0.9641(7)$	$0.1902(6)$	$0.038(3)$
C1	$1.0600(18)$	$0.6932(9)$	$0.2725(7)$	$0.022(3)$
C2	$0.9752(20)$	$0.7147(10)$	$0.1070(7)$	$0.032(4)$
C3	$1.0751(16)$	$0.8925(8)$	$0.1974(7)$	$0.021(3)$
C10	$0.7085(16)$	$0.9568(8)$	$0.3564(6)$	$0.016(3)$
C11	$0.5507(17)$	$0.9310(9)$	$0.4241(7)$	$0.018(3)$
C12	$0.6749(18)$	$0.8289(9)$	$0.4522(6)$	$0.022(3)$
C13	$0.6394(18)$	$0.7274(8)$	$0.3946(7)$	$0.024(3)$
C14	$0.8479(17)$	$0.8994(9)$	$0.4186(7)$	$0.022(3)$
C15	$0.5468(21)$	$1.0207(9)$	$0.4912(7)$	$0.030(4)$
C16	$0.3495(17)$	$0.9112(10)$	$0.3927(8)$	$0.026(3)$
C20	$0.6705(17)$	$0.8805(7)$	$0.2864(7)$	$0.017(3)$
C21	$0.6423(16)$	$0.7646(7)$	$0.3058(6)$	$0.017(3)$
C22	$0.5832(18)$	$0.7112(10)$	$0.2306(8)$	$0.030(4)$
C23	$0.5793(18)$	$0.7904(9)$	$0.1663(8)$	$0.029(4)$
C24	$0.6316(17)$	$0.8979(9)$	$0.2000(7)$	$0.021(3)$

${ }^{2}$ Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as one-third of the trace of the orthogonalized U tensor.
a greater degree from an octahedral coordination. Summaries of crystal data, selected bond lengths and angles for $\mathbf{1 a}, \mathbf{1 b}, \mathbf{5 a}$ and $\mathbf{5 b}$ are listed in Table 2-8.

3. Experimental details

3.1. General

All reactions and manipulations were performed under nitrogen by use of standard vacuum line and Schlenk tube techniques. All solvents were degassed before use. Diethyl ether was distilled from sodium benzophenone ketyl. Acetonitrile and dichloromethane were distilled from calcium hydride. Dimethoxyethane (DME) and n-hexane were dried over molecular sieves. Unless otherwise indicated, all commercially available reagents were used as received. Column chromatography was performed on Grade II (activated) silica gel (Merck Kieselgel 60). For organometallic complexes, all chromatography was carried out under nitrogen. n-Butyllithium (1.6 M in n-hexane) (Aldrich) and 2-butanone (Fluka) were used as supplied. $\mathrm{NOBF}_{4}[37], \operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ [38-41], iodosylbenzene [42,43] and $\mathrm{PCpH}[19,20]$ were prepared as described in the literature. Infrared spectra were recorded on a Perkin-Elmer 1750 Fourier-transform spectrophotometer as solutions in n-hexane, dichloromethane or DME using NaCl cells. NMR spectra were recorded on either a Varian VXR 300 or a Varian Unity 500 spectrometer in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{3} \mathrm{C}$ NMR spectra were referenced to tetramethylsilane (TMS) using internal solvent peaks; ${ }^{31}$ P NMR spectra were refer-

Table 4
Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ of exo- $\mathrm{PCpRe}(\mathrm{CO})_{3}(1 \mathrm{a})$ with estimated standard deviations in parentheses

Bond lengths			
$\mathrm{Re}-\mathrm{Cl}$	1.909(12)	$\mathrm{C} 10-\mathrm{C} 20$	1.479(14)
$\mathrm{Re}-\mathrm{C} 2$	$1.915(12)$	C11-C12	$1.579(16)$
$\mathrm{Re}-\mathrm{C} 3$	1.905(11)	C11-C15	$1.527(16)$
$\mathrm{Re}-\mathrm{C} 20$	2.334(11)	C11-C16	$1.536(17)$
$\mathrm{Re}-\mathrm{C} 21$	2.359(11)	C12-C13	$1.554(15)$
$\mathrm{Re}-\mathrm{C} 22$	2.348(13)	C12-C14	$1.588(17)$
$\mathrm{Re}-\mathrm{C} 23$	$2.301(13)$	C13-C21	1.501(15)
$\mathrm{Re}-\mathrm{C} 24$	$2.314(12)$	$\mathrm{C} 20-\mathrm{C} 21$	1.443(13)
$\mathrm{O} 1-\mathrm{Cl}$	1.173(15)	C20-C24	$1.436(16)$
$\mathrm{O} 2-\mathrm{C} 2$	1.144(16)	C21-C22	$1.435(16)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.167(14)$	$\mathrm{C} 22-\mathrm{C} 23$	1.407(17)
C10-C11	$1.596(16)$	C23-C24	$1.450(16)$
C10-C14	$1.570(15)$		
Bond angles			
$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 2$	91.9(5)	$\mathrm{C} 14-\mathrm{C} 10-\mathrm{C} 20$	109.3(8)
$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 3$	89.5(5)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	87.3(8)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{C} 3$	89.3(5)	C10-C11-C15	111.1(9)
$\mathrm{C} 10-\mathrm{C} 20-\mathrm{C} 21$	117.3(9)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	117.3(9)
$\mathrm{C} 10-\mathrm{C} 20-\mathrm{C} 24$	133.3(8)	C12-C11-C15	110.8(9)
$\mathrm{C} 13-\mathrm{C} 21-\mathrm{C} 20$	119.8(9)	C12-C11-C16	119.7(9)
$\mathrm{C} 13-\mathrm{C} 21-\mathrm{C} 22$	132.0(9)	C15-C11-C16	109.1(10)
$\mathrm{Re}-\mathrm{Cl}-\mathrm{O} 1$	177.4(11)	C11-C12-C13	110.4(9)
$\mathrm{Re}-\mathrm{C} 2-\mathrm{O} 2$	175.4(13)	C11-C12-Cl4	85.5(8)
$\mathrm{Re}-\mathrm{C} 3-\mathrm{O} 3$	177.6(10)	C13-C12-Cl4	109.9(9)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	106.8(9)	C12-C13-C21	109.5(8)
C11-C10-C14	85.5(8)	C10-C14-C12	87.9(8)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 20$	105.9(9)	$\mathrm{Re}-\mathrm{C} 20-\mathrm{C} 10$	127.7(8)

Table 5
Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for endo-PCpRe(CO) ${ }_{3}$ ($\mathbf{1 b}$) with estimated standard deviations in parentheses

Atom	x	y	z	$U_{\text {eq }}^{a}$
Re	$0.04153(4)$	0.000	$0.39596(3)$	$0.03315(9)$
O1	$-0.131(1)$	$-0.021(2)$	$0.6484(7)$	$0.066(3)$
O2	$-0.262(1)$	$0.236(1)$	$0.326(1)$	$0.068(3)$
O3	$-0.212(1)$	$-0.237(1)$	$0.301(1)$	$0.065(3)$
C1	$-0.068(1)$	$-0.014(3)$	$0.552(1)$	$0.045(3)$
C2	$-0.145(2)$	$0.145(2)$	$0.359(1)$	$0.043(3)$
C3	$-0.122(2)$	$-0.149(1)$	$0.330(1)$	$0.031(3)$
C10	$0.329(1)$	$-0.095(1)$	$0.139(1)$	$0.032(3)$
C11	$0.204(1)$	$-0.005(3)$	$0.0388(9)$	$0.040(2)$
C12	$0.341(2)$	$0.120(2)$	$0.065(1)$	$0.040(3)$
C13	$0.292(2)$	$0.209(2)$	$0.180(1)$	$0.044(3)$
C14	$0.497(1)$	$0.005(4)$	$0.1024(9)$	$0.045(3)$
C15	$0.223(2)$	$-0.074(2)$	$-0.086(1)$	$0.049(4)$
C16	$-0.010(1)$	$0.010(2)$	$0.0533(9)$	$0.047(3)$
C20	$0.298(1)$	$-0.042(1)$	$0.265(1)$	$0.029(3)$
C21	$0.287(1)$	$0.106(1)$	$0.2854(8)$	$0.029(3)$
C22	$0.314(2)$	$0.133(1)$	$0.419(1)$	$0.033(3)$
C23	$0.344(1)$	$-0.003(3)$	$0.478(1)$	$0.058(3)$
C24	$0.333(2)$	$-0.117(2)$	$0.379(1)$	$0.044(3)$

${ }^{\text {a }}$ Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as one-third of the trace of the orthogonalized U tensor.
enced to $\mathrm{H}_{3} \mathrm{PO}_{4}$ (external). All ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR data are given in terms of the proton-decoupled (broad-band) spectra.

In the crystal structure determinations of $\mathbf{1 a}, \mathbf{1 b}, \mathbf{5 a}$ and $\mathbf{5 b}$, the data collection was performed on a Siemens R3m/V diffractometer (1a) and on an ENRAF Nonius

Table 6
Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ of endo- $\mathrm{PCpRe}(\mathrm{CO})_{3}(\mathbf{1 b})$ with estimated standard deviations in parentheses

Bond lengths			
$\mathrm{Re}-\mathrm{C} 1$	1.90(1)	$\mathrm{C} 10-\mathrm{C} 20$	1.48(2)
$\mathrm{Re}-\mathrm{C} 2$	1.90 (3)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.52(3)
$\mathrm{Re}-\mathrm{C} 3$	1.91(2)	C11-C15	1.51(2)
$\mathrm{Re}-\mathrm{C} 20$	2.37(1)	C11-C16	1.52(1)
$\mathrm{Re}-\mathrm{C} 21$	2.35(1)	C12-C13	1.54(2)
$\mathrm{Re}-\mathrm{C} 22$	2.28(2)	C12-C14	1.57(4)
$\mathrm{Re}-\mathrm{C} 23$	2.28(1)	C13-C21	1.48 (2)
$\mathrm{Re}-\mathrm{C} 24$	2.33(2)	C20-C21	1.38(2)
$\mathrm{O} 1-\mathrm{Cl}$	1.15(2)	C20-C24	1.43(2)
O2-C2	1.22 (3)	$\mathrm{C} 21-\mathrm{C} 22$	1.48(2)
O3-C3	$1.07(3) 2$	C22-C23	1.41(4)
C10-C11	1.60(2)	C23-C24	1.50(3)
C10-C14	1056(3)		
Bond angles			
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 2$	86.(1)	C14-C10-C20	101.(1)
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 3$	92.(1)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{Cl2}$	86.(1)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{C} 3$	91.2(5)	$\mathrm{C} 10-\mathrm{Cl1}-\mathrm{Cl} 5$	109.(2)
C10-C20-C21	119.(1)	$\mathrm{C} 10-\mathrm{Cl1}-\mathrm{Cl} 6$	120.(1)
C10-C20-C24	128.(1)	C12-C11-C15	114.(1)
C13-C21-C20	120.(1)	C12-C11-C16	123.(2)
C13-C21-C22	130.(2)	C15-C11-C16	105.(1)
$\mathrm{Re}-\mathrm{Cl}-\mathrm{O} 1$	179.(1)	C11-C12-C13	113.(1)
$\mathrm{Re}-\mathrm{C} 2-\mathrm{O} 2$	175.(2)	C11-C12-C14	89.(2)
$\mathrm{Re}-\mathrm{C} 3-\mathrm{O} 3$	176.(2)	C13-C12-C14	109.(1)
C20-C21-C22	108.(2)	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 21$	108.(1)
$\mathrm{Cl1}-\mathrm{C10}-\mathrm{Cl} 4$	86.(1)	C10-C14-C12	85.9(9)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 20$	112.(1)	$\mathrm{Re}-\mathrm{C} 20-\mathrm{C} 10$	139.(1)

CAD4 diffractometer ($\mathbf{1 b}$ and $\mathbf{5 a} / \mathbf{5 b}$). Crystal data, data collection parameters and refinement parameters are given in Table 2. The structures were solved by direct methods and refined on structure factors with the Siemens shelxtl-plus (1a) and the SdP program system ($\mathbf{1 b}$ and $5 \mathrm{a} / 5 \mathrm{~b}$).

3.2. Preparations

3.2.1. Preparation of exo- and endo- $\left(\eta^{5}-\mathrm{PCp}\right) \mathrm{Re}\left(\mathrm{CO}_{3}\right)^{-}$ (1a and 1b)

$\mathrm{PCpH}(0.82 \mathrm{~g}, 5.1 \mathrm{mmol})$ was dissolved in 30 ml of $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $0^{\circ} \mathrm{C}$. While stirring 3.2 ml (5.1 mmol) of ${ }^{\mathrm{n}} \mathrm{BuLi}$ (1.6 M in hexane) were added via a syringe. The mixture was then refluxed for 2.5 h . LiPCp precipitated as a white solid. The solvent was removed by vacuum distillation and the product was taken up in 25 ml of DME.

To $1.8 \mathrm{~g}(5.0 \mathrm{mmol})$ of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ were added 100 ml of DME and the suspension refluxed for 4 h . $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ dissolved and CO gas evolved. The solution was then cooled to $0^{\circ} \mathrm{C}$ and, while stirring, 5.1 mmol of LiPCp in 25 ml of DME were added dropwise over a period of 15 min . The mixture was stirred for further 10 \min at $0^{\circ} \mathrm{C}$ and then refluxed for 1 h . After cooling, the solvent was removed by vacuum distillation and the residue extracted with n -hexane and filtered. Chromatography over silica gel ($1.5 \times 15 \mathrm{~cm}$) in n-hexane and evaporation of the solvent afforded a pale brown solid as the crude product; yield of $\mathbf{1 a}+\mathbf{1 b}, 1.6 \mathrm{~g}$ (3.8 $\mathrm{mmol}, 76 \%$) with $\mathbf{1 a} / \mathbf{1 b}=64: 36$.

Purification and separation of the two isomers was achieved by dissolving the crude product in n-hexane. The complex exo- $\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{CO})_{3}$ (1a) was separated by fractional crystallization at $-30^{\circ} \mathrm{C}$. Colourless crystalline needles of 1a precipitated as single crystals after 3 d and these were filtered off and dried under vacuum; yield 0.72 g of $\mathbf{1 a}(34 \%)$. After repeated crystallizations and reductions of the solvent volume, the mother liquid contained only endo- $\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{CO})_{3}(\mathbf{1 b})$, of which colourless crystalline needles were obtained as single crystals at $-30^{\circ} \mathrm{C}$ after 5 d .

Compound 1a: IR (n -hexane) $\left(\mathrm{cm}^{-1}\right.$): 2023; 1932. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.16(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$); 5.08 (dd, $J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$); 5.04 (br, 1 H); 2.90 (dd, $J=16.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.77(\mathrm{~m}, 2 \mathrm{H}) ; 2.53(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}) ; 2.23(\mathrm{~m}, 1 \mathrm{H}) ; 1.49(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.40$ (s, 3H, CH ${ }_{3}$); $0.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 195.6 ; 120.4 ; 103.2 ; 83.2 ; 79.4 ; 77.0$; 41.8; 41.1; 40.6; 38.4; 26.6; 26.4; 21.9 ppm . Anal. Found: C, $42.52 ; \mathrm{H}, 3.62 \% . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Re}$ Calc.: C , 41.95; H, 3.52\%.

Compound 1b: IR (hexane) $\left(\mathrm{cm}^{-1}\right.$): 2023; 1931: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.23(\mathrm{t}, J=2.8,1 \mathrm{H}) ; 4.97$ (br, 1H); 4.78 (dd, $J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.80(\mathrm{~m}, 2 \mathrm{H})$; 2.75 (dd, $J=16.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.64(\mathrm{t}, J=5.0 \mathrm{~Hz}$,
$1 \mathrm{H}) ; 2.22(\mathrm{~m}, 1 \mathrm{H}) ; 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.17(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}) $1.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 195.6 ; 118.6 ; 104.3 ; 85.5 ; 77.3 ; 73.6$; $41.4 ; 41.1 ; 39.7 ; 36.5 ; 27.3 ; 26.6 ; 22.5 \mathrm{ppm}$.

3.2.2. Preparation of exo- $\left[\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{CO}_{2} \mathrm{~J}^{+}\right.\right.$$B F_{4}^{-}$(2)

Compound 1a ($2.49 \mathrm{~g}, 5.80 \mathrm{mmol}$) was dissolved in 45 ml of dichloromethane and kept at $0^{\circ} \mathrm{C}$ by means of an ice bath. While stirring, $0.93 \mathrm{~g}(7.98 \mathrm{mmol})$ of freshly prepared NOBF_{4} were added slowly. The solution turned yellow and gas evolved. The mixture was stirred for 20 h while the ice bath was allowed to warm up. The solvent was then removed and the residue extracted with acetone and filtered. The filtrate was concentrated and ethyl ether added to precipitate the yellow product, which was collected by filtration, washed with ether and dried; yield of 2, 2.94 g (5.67 mmol, 98%).

Compound 2: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{cm}^{-1}\right)$: 2109; 2052; 1799. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta: 6.26(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}) ; 6.03$ (br, 1H); $6.00(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.15$ (dd, $J=17.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.02(\mathrm{~m}, 2 \mathrm{H}) ; 2.87(\mathrm{t}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.43(\mathrm{~m}, 1 \mathrm{H}) ; 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.08$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$); $0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 182.5 ; 182.3 ; 131.6 ; 114.5$; 93.1; 89.5; 87.9; 42.0; 41.4; 41.3; 38.4; 27.0; 26.3; 22.2 ppm. Anal. Found: C, $32.22 ; \mathrm{H}, 2.93 ; \mathrm{N}, 2.67 \%$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BF}_{4} \mathrm{NO}_{3}$ Re Calc.: C, 32.44; H, 2.92; $\mathrm{N}, 2.7 \%$.

3.2.3. Preparation of $R_{R e}, S_{R e}$-exo-I($\left.\eta^{5}-P C p\right) R e(N O)$ $\left.(\mathrm{CO})\left(P \mathrm{Ph} h_{3}\right)\right]^{+} B F_{4}^{-} \quad(4 \boldsymbol{a}, 4 \mathrm{~b})$

Compound $2(2.84 \mathrm{~g}, 5.48 \mathrm{mmol})$ was dissolved in 100 ml of acetonitrile and the solution kept at $0^{\circ} \mathrm{C}$ by means of an ice bath. While stirring, $1.32 \mathrm{~g}(6.0 \mathrm{mmol})$ of freshly prepared iodosylbenzene were added slowly. The suspension was stirred for 20 h while gradually being brought to room temperature. The progress of the reaction was monitored by IR spectroscopy. Evaporation of the solvent afforded an orange solid of crude $R_{\mathrm{Re}}, S_{\mathrm{Re}}$ exo- $\left[\left(\eta^{5}-\mathrm{PCp}\right) \operatorname{Re}(\mathrm{NO})(\mathrm{CO})\left(\mathrm{NCCH}_{3}\right)\right]{ }^{+} \mathrm{BF}_{4}^{-}$ ($\mathbf{3 a}, \mathbf{3 b}$); yield of $\mathbf{3 a}+\mathbf{3 b}, 2.82 \mathrm{~g}(5.32 \mathrm{mmol}, 97 \%)$. This solid was taken up in 120 ml of 2-butanone and $2.87 \mathrm{~g}(10.96 \mathrm{mmol})$ of PPh_{3} were added. The solution was refluxed with stirring for 4 h . After cooling, the solvent was removed by vacuum distillation. The residue was washed with diethyl ether and purified by recrystallization from acetone/diethyl ether to give light yellow needles of $R_{\mathrm{Re}}, S_{\mathrm{Re}}$ exo- $\left[\left(\eta^{5}-\mathrm{PCp}\right) \mathrm{Re}(\mathrm{NO})(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}^{-}(\mathbf{4 a}, \mathbf{4 b})$ with the ratio of diastereomers $R_{\mathrm{Re}} / S_{\mathrm{Re}}=1: 1$; yield of $\mathbf{4 a}+\mathbf{4 b}, 3.13 \mathrm{~g}(4.17 \mathrm{mmol}$, 76%.

Compounds 3a + 3b: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{cm}^{-1}\right): 2020$; 1756. IR $\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{cm}^{-1}\right): 2022 ; 1756$.

Compounds $\mathbf{4 a}+\mathbf{4 b}$: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{cm}^{-1}\right)$: 2015 ; 1753. IR (THF) $\left(\mathrm{cm}^{-1}\right)$: $2011 ; 1746 .{ }^{1} \mathrm{H}$ NMR (500

Table 7
Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ of $R_{R e}, S_{\mathrm{Re}}-\operatorname{exo}-\mathrm{PCpRe}\left(\mathrm{NO}^{2}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(5 \mathrm{a}, 5 \mathrm{~b})$ with estimated standard deviations in parentheses

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Re 1	0.02008(5)	0.562	0.78609 (3)	0.0389 (1)
$\mathrm{Re}(2)$	-0.05151(5)	0.54317(3)	0.29282(3)	0.03241(9)
P1	0.2234(3)	0.6308(2)	0.8278(2)	0.0324(7)
P2	-0.2414(3)	$0.6214(2)$	0.3329 (2)	0.0297(7)
O1	-0.031(1)	0.5025(7)	0.9556(6)	$0.080(4)$
O 2	$0.015(1)$	$0.4900(8)$	0.4619 (7)	0.085(4)
N1	-0.011(1)	0.5283(6)	0.8888(7)	0.048(3)
N2	-0.012(1)	0.5146(6)	0.3931(7)	0.044(3)
Cl	-0.114(2)	0.6605(9)	0.798(1)	0.070 (5)
C2	0.088(1)	0.6354(8)	0.2860(9)	0.054(4)
C 11	-0.265(1)	0.4543(8)	0.7064(9)	0.051(4)
C12	-0.261(2)	0.4181(9)	0.7917(9)	0.058(4)
Cl 3	-0.171(2)	0.3564(7)	0.752(1)	0.059(4)
C14	-0.008(2)	0.3765(8)	0.751(1)	0.060(4)
C15	-0.252(2)	0.3766(9)	$0.667(1)$	0.063(4)
C16	-0.169(2)	0.3661(9)	0.587(1)	0.068(5)
C 17	-0.394(2)	$0.335(1)$	0.663(1)	0.082(5)
C21	0.178(2)	0.4022(8)	0.235(1)	$0.060(4)$
C22	0.298(2)	0.456(1)	0.253(1)	0.066(5)
C23	0.313(1)	0.4697(8)	0.1624 (9)	0.053(4)
C24	$0.200(1)$	0.5251(6)	0.1305(9)	0.050(4)
C25	0.257(2)	0.3876(9)	0.1490(9)	$0.055(4)$
C26	$0.166(2)$	0.3693(9)	0.0737(9)	$0.061(4)$
C27	0.384(2)	0.333 (1)	$0.158(1)$	0.079(5)
C100	-0.119(1)	0.4928(7)	0.6921(8)	0.042(3)
C101	$0.009(1)$	0.4534(7)	0.7168(8)	0.043 (3)
C102	0.134(2)	0.4957(9)	0.6893(9)	$0.057(4)$
C103	0.081(2)	0.5590(9)	0.6500(8)	0.073(4)
C104	-0.065(2)	0.5597(9)	0.6523(8)	0.073(4)
C110	0.370(1)	0.5821(7)	0.8830(7)	0.038(3)
C111	0.366(2)	0.5058(8)	0.898(1)	0.066(5)
C112	0.471(2)	0.4711(9)	0.940 (1)	0.087(6)
C113	0.592(2)	0.5104(9)	0.972(1)	0.076(5)
C114	0.604(2)	0.587(1)	0.959(1)	0.072(5)
C115	0.495(1)	0.6202(8)	0.919(1)	0.056(4)
C120	0.316(1)	0.6764(7)	0.7451(8)	0.041(3)
C121	0.242(2)	0.7308(7)	0.7001(9)	0.048(4)
C122	$0.302(2)$	$0.7664(8)$	0.6327(9)	$0.064(5)$
C123	0.441(2)	0.747(1)	$0.609(1)$	0.086(6)
C124	0.518(2)	0.693(1)	0.649(1)	0.077 (5)
C125	$0.453(2)$	0.6570(9)	0.7173(9)	0.057(4)
C130	0.192(1)	0.7040(7)	0.9044(8)	0.039(3)
C131	$0.243(1)$	0.7755(8)	0.8952(9)	0.050(4)
C132	0.215 (2)	0.8277(8)	0.956(1)	$0.071(5)$
C133	0.152(2)	0.8063(8)	1.0279(9)	$0.060(4)$
C134	0.097(2)	0.735(1)	1.036(1)	$0.065(5)$
C135	$0.121(2)$	0.6843(8)	$0.9771(8)$	0.049(4)
C200	0.041(1)	0.4441(6)	$0.2179(8)$	0.041(3)
C201	0.051(1)	0.5064(7)	$0.1694(7)$	$0.038(3)$
C202	-0.095(2)	0.537(1)	$0.1535(9)$	$0.066(4)$
C203	-0.191(2)	0.4890(8)	0.1939(9)	0.059(4)
C204	-0.113(2)	$0.4340(8)$	0.230(1)	0.061(4)
C210	-0.394(1)	0.5789(6)	$0.3895(6)$	0.033(3)
C211	-0.391(1)	$0.5058(7)$	$0.406(1)$	0.053(4)
C212	-0.507(2)	0.4727(8)	0.449(1)	0.073 (5)
C213	-0.623(1)	$0.5159(9)$	0.476(1)	$0.064(4)$
C214	-0.626(2)	0.5886(9)	$0.461(1)$	0.069(5)
C215	-0.507(2)	0.6203(8)	0.417(1)	0.056(4)
C220	-0.329(1)	$0.6684(7)$	$0.2438(8)$	$0.038(3)$
C221	-0.243(1)	0.7178(8)	$0.1983(8)$	0.047(4)
C222	-0.300(2)	0.7536(9)	0.132(1)	0.060(4)

Table 7 (continued)

Atom	x	y	z	$U_{\text {eq }}{ }^{a}$
C223	$-0.442(2)$	$0.7403(9)$	$0.105(1)$	$0.066(5)$
C224	$-0.522(2)$	$0.691(1)$	$0.148(1)$	$0.072(5)$
C225	$-0.471(2)$	$0.6551(8)$	$0.216(1)$	$0.057(4)$
C230	$0.199(1)$	$0.6960(7)$	$0.4055(7)$	$0.033(3)$
C231	$-0.255(1)$	$0.7684(7)$	$0.3967(8)$	$0.041(3)$
C232	$-0.224(2)$	$0.8194(9)$	$0.459(1)$	$0.069(5)$
C233	$-0.146(2)$	$0.8039(8)$	$0.5288(9)$	$0.055(4)$
C234	$-0.094(2)$	$0.7343(9)$	$0.5351(9)$	$0.067(5)$
C235	$-0.113(2)$	$0.6805(7)$	$0.4764(9)$	$0.052(4)$

${ }^{2}$ Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as one-third of the trace of the orthogonalized U tensor.

Table 8
Selected bond lengths (\AA) and angles (${ }^{\circ}$) of $R_{\mathrm{Re}}, S_{\mathrm{Re}}$-exo- $\mathrm{PCpRe}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(5 \mathrm{a}, 5 \mathrm{~b})$ with estimated standard deviations in parentheses

Bond lengths			
Re1-P1	2.330(3)	C200-C201	1.38(2)
Rel-N1	1.79(1)	C200-C204	1.43(2)
$\mathrm{Re} 1-\mathrm{C} 1$	2.18 (2)	C201-C202	1.46 (2)
$\mathrm{Re} 1-\mathrm{Cl} 100$	2.34(1)	C202-C203	1.40 (2)
$\mathrm{Re} 1-\mathrm{C} 101$	2.27(1)	C203-C204	1.36(2)
$\mathrm{Re} 1-\mathrm{C} 102$	2.23(1)	C11-C12	1.53(2)
Rel-C103	2.27(1)	C11-C15	1.55(2)
Re1-C104	2.29(1)	C11-C100	1.52(2)
Re2-P2	2.327 (3)	C12-C13	1.53(2)
Re 2 - N 2	1.74(1)	C13-C14	1.52(2)
$\mathrm{Re} 2-\mathrm{C} 2$	2.10(1)	C13-C15	1.60 (2)
Re2-C200	2.33(1)	C14-C101	1.51(2)
Re2-C201	2.30(1)	C15-C16	1.51(2)
Re2-C202	2.29(1)	C15--C17	1.50 (2)
Re2-C203	2.26(1)	C21-C22	1.49 (2)
Re2-C204	2.29(1)	C21-C25	1.59 (2)
$\mathrm{O} 1-\mathrm{N} 1$	1.19(1)	C21-C200	1.48(2)
O2-N2	1.22(1)	C22-C23	1.49(2)
C100-C101	1.42(2)	C23-C24	1.52 (2)
C100-C104	1.46(2)	C23-C25	1.59 (2)
C101-C102	1.44(2)	C24-C201	1.53(2)
C102-C103	1.40(2)	C25-C26	1.51(2)
C103-C104	1.33(2)	C25-C27	1.53(2)

Bond angles			
P1-Rel-N1	92.3(3)	C14-C101-C100	119.(1)
P1-Re1-Cl	88.3(4)	C14-C101-C102	134.(1)
P2-Re2-N2	94.3(3)	C15-C11-C100	107.(1)
P2-Re2-C2	88.4(4)	C16-C15-C17	109.(1)
$\mathrm{N} 1-\mathrm{Rel}-\mathrm{Cl}$	96.0(6)	C202-C203-C204	110.(1)
N2-Re2-C2	99.4(5)	C21-C22-C23	89.(1)
Rel-N1-O1	177(1)	C21-C25-C23	82.5(9)
$\mathrm{Re} 2-\mathrm{N} 2-\mathrm{O} 2$	176.(1)	C21-C25-C26	120.(1)
C101-C102-C103	108.(1)	C21-C25-C27	111.(1)
C11-C12-C13	87(1)	C21--C200-C201	118.(1)
C11-C15-C13	84(1)	C21-C200-C204	137.(1)
C11-C15--C16	121.(1)	C22-C21-C25	87.(1)
C11-C15-C17	114.(1)	C22-C21-C200	108.(1)
C11-C100-C101	116.(1)	C22-C23-C24	112.(1)
C11-C100-C104	138.(1)	C22-C23-C25	87.(1)
$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{C} 15$	89.(1)	C23-C24-C201	108.(1)
C12-C11-C100	108.(1)	C23-C25-C26	120.(1)
C12-C13-C14	110.(1)	C23-C25-C27	111.(1)
$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Cl5}$	87.(1)	C24-C23-C25	111.(1)
C13-C14-C101	109.(1)	C24-C201-C200	118.(1)
C13-C15-C16	118.(1)	C24-C201-C202	130.(1)
C13-C15-C17	108.(1)	C25-C21-C200	107.(1)
C14-C13-C15	113.(1)	C26-C25-C27	110.(1)

MHz , acetone $-d_{6}$) $\delta: 7.67(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}) ; 7.50(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{Ph}) ; 6.29$ (br, 1H); $6.19(\mathrm{~m}, 1 \mathrm{H}) ; 5.68$ (br, 1H); 5.61 (m, $1 \mathrm{H}) ; 5.42(\mathrm{~m}, 1 \mathrm{H}) ; 5.37(\mathrm{~m}, 1 \mathrm{H}) ; 3.26-2.83(\mathrm{~m}, 8 \mathrm{H})$; $2.40(\mathrm{~m}, 2 \mathrm{H}) ; 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; 1.38 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$); 1.35 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$); $0.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 0.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta: 198.1 ; 197.9 ; 134.0 ; 133.9$; 133.1; 132.1; 131.6; 130.6; 130.5; 129.2; 128.0; 113.5; 111.8; 96.3; 95.3; 93.9; 93.0; 87.4; 85.5; 42.1; 41.9; 41.8; 41.5; 39.0; 37.0; 27.2; 27.0; 26.6; 26.5; 22.2; 22.1 ppm. ${ }^{31} \mathrm{P}$ NMR (202 MHz , acetone- d_{6}) $\delta: 11.5 ; 11.3$ ppm. Anal. Found: C, 49.43; H, 3.96; N, 1.84\%. $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{BF}_{4} \mathrm{NO}_{2}$ PRe Calc.: C, 49.48; H, 4.02; N, 1.86%.

3.2.4. Preparation of $R_{R e}, S_{R e}-$ exo- $\left(\eta^{5}-P C p\right) R e(N O)-$

 $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(5 a, 5 b)$Compounds $\mathbf{4 a}+\mathbf{4 b}(1.16 \mathrm{~g}, 1.54 \mathrm{mmol})$ were dissolved in 100 ml of THF. While stirring, 0.175 g (4.63 $\mathrm{mmol}) \mathrm{NaBH}_{4}$ were added. The solution was stirred for 3 h at room temperature. The solvent was removed under reduced pressure, the residue extracted with toluene and filtered. Chromatography over silica gel $(1.5 \times 20 \mathrm{~cm})$ in toluene and evaporation of the solvent afforded an orange solid. This was dissolved in hot n -hexane and the solution gradually cooled to room temperature. Red single crystals precipitated which were filtered off and dried under oil pump vacuum; yield of $\mathbf{5 a}+\mathbf{5 b}, 0.80 \mathrm{~g}(1.23 \mathrm{mmol}, 80 \%)$ with the ratio of diastereomers $R_{\mathrm{Re}} / S_{\mathrm{Re}}=1: 1$.

Compounds $\mathbf{5 a}+\mathbf{5 b}$: IR (THF)(cm ${ }^{-1}$): 1631. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{cm}^{-1}\right): 1613 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 7.40(\mathrm{~m}, 30 \mathrm{H}, 6 \times \mathrm{Ph}) ; 5.21$ (br, 1H); 5.19 (dd, $J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.33(\mathrm{~m}, 1 \mathrm{H}) ; 4.03$ (dd, $J=2.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$) ; 3.63 (m, 1H); 3.24 (br, 1H); 2.87-2.56 (m, 8 H); 2.24 (m, 2H); 1.62 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$); 1.56 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$); $1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.42$ (s, 3 H , CH_{3}); $0.99\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 0.94(\mathrm{~d}, J=6.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 0.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm . ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 137.4 ; 137.0$; 134.1; 134.0; 130.1; 128.6; 128.5; 118.7; 118.6; 104.8; 101.6; 91.3; 88.4; 87.8; 86.8; 83.4; 83.3; 42.4; 42.3; $41.6 ; 41.4 ; 41.3 ; 37.1 ; 35.4 ; 30.1 ; 27.3 ; 27.0 ; 26.7$; 25.3; 22.0; $-27.9 ;-35.7 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 27.5 ; 26.9 \mathrm{ppm}$. Anal. Found: C, $56.85 ; \mathrm{H}$, 5.16; $\mathrm{N}, 2.21 \% \mathrm{C}_{31} \mathrm{H}_{33}$ NOPRe Calc.: C, 57.04; H, 5.10; N, 2.15\%.
3.2.5. Preparation of $R_{R e}, S_{R e}-$ exo- $/\left(\eta^{5}-P C p R e(N O)-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{ClCD}_{2} \mathrm{Cl}\right)\right]^{+} \mathrm{BF}_{4}^{-}(\mathbf{6 a}, \boldsymbol{6 b})$
(NMR experiment): A $5-\mathrm{mm}$ NMR tube was charged with $0.061 \mathrm{~g}(0.094 \mathrm{mmol})$ of $5 \mathbf{a}+\mathbf{5 b}$ and 0.50 ml of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The tube was cooled to $-78^{\circ} \mathrm{C}$ and HBF_{4}. $\mathrm{Et}_{2} \mathrm{O}$ ($12.9 \mu \mathrm{l}, 0.094 \mathrm{mmol}$) was added via a syringe. The tube was shaken and placed in a $-80^{\circ} \mathrm{C}$ NMR probe. ${ }^{31} \mathrm{P}$ NMR spectra at various temperatures were recorded.

Compounds $\mathbf{6 a}+\mathbf{6 b}:{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta: 13.4 ; 11.9 \mathrm{ppm}$.

4. Supplementary material

Further details of the crystal structure investigation (complete listings of crystal and refinement data, bond lengths and angles, H -atom coordinates, thermal parameters (U) and structure factors) are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, 76344 Eggenstein-Leopoldshafen.

Acknowledgement

The authors are grateful for financial support from the Schweizerische Nationalfonds and the Deutsche Forschungsgemeinschaft (SFB 380).

References

[1] J.A. Gladysz, C.E. Strouse and J.M. Merrifield, Organometallics, I (1982) 1204.
[2] J.A. Gladysz, W. Tam, G.Y. Lin, W.K. Wong, W.A. Kiel and V.K. Wong, J. Am. Chem. Soc., 104 (1982) 141.
[3] J.A. Gladysz, J.M. Fernandez, W.E. Buhro and J.M. Merrifield, Inorg. Chem., 23 (1984) 4022.
[4] J.A. Gladysz and J.M. Fernandez, Inorg. Chem., 25 (1986) 2672.
[5] J.A. Gladysz and J.M. Fernandez, Organometallics, 8 (1989) 207.
[6] J.A. Gladysz, T.S. Peng, G.S. Bodner and A.M. Arif, Organometallics, 9 (1990) 1191.
[7] J.A. Gladysz and T.S. Peng, J. Am. Chem. Soc., 114 (1992) 4174.
[8] J.A. Gladysz and D.P. Klein, J. Am. Chem. Soc., 114 (1992) 8710.
[9] J.A. Gladysz, A.M. Arif and T.S. Peng, Helv. Chim. Acta, 75 (1992) 442.
[10] J.A. Gladysz, S.K. Agbossou, C. Roger and A. Igau, Inorg. Chem., 31 (1992) 419.
[11] J.A. Gladysz, N.Q. Mendez, J.W. Seyler and A.M. Arif, J. Am. Chem. Soc., 115 (1993) 2323.
[12] J.A. Gladysz, D.P. Klein, N.Q. Mendez, J.W. Seyler and A.M. Arif, J. Organomet. Chem., 450 (1993) 157.
[13] J.A. Gladysz, J. Pu, T.S. Peng, C.L. Mayne and A.M. Arif, Organometallics, 12 (1993) 2686.
[14] J.A. Gladysz, Y. Wang, F. Agbossou, D.M. Dalton, Y. Liu and A.M. Arif, Organometallics, 12 (1993) 2699.
[15] J.A. Gladysz, T.S. Peng, Y. Wang and A.M. Arif, Organometallics, 12 (1993) 4535.
[16] J.A. Gladysz, G.B. Richter-Addo, D.A. Knight, M.A. Dewey and A.M. Arif, J. Am. Chem. Soc., 115 (1993) 11863.
[17] J.A. Gladysz, T.S. Peng and J. Pu, Organometallics, 13 (1994) 929.
[18] L.A. Paquette, M. Gugelchuk and M.L. McLaughlin, J. Org. Chem., 52 (1987) 4732.
[19] L.A. Paquette and M.L. McLaughlin, Org. Synth., 69 (1992) 220.
[20] A. Salzer, H. Schmalle, R. Stauber and S. Streiff, J. Organomet. Chem., 408 (1991) 403.
[21] L.A. Paquette, K.J. Moriarty and R.D. Rogers, Organometallics, 8 (1989) 1506.
[22] L.A. Paquette, R.D. Rogers and M.R. Sivik, J. Organomet. Chem., 450 (1993) 125.
[24] J.H. Nelson, D. Bhaduri, R.A. Jacobson and T. Wang, Organometalics, 13 (1994) 2291.
[25] W.P. Fehlhammer, W.A. Herrmann and K. Öfele, in G. Brauer (ed.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke, Stuttgart, 1981, Bd. 3, pp. 1869-1870.
[26] M.S. Wrighton, K.M. Young and T.M. Miller, J. Am. Chem. Soc., 112 (1990) 1529.
[27] F. Calderazzo and D. Vitali, Gazz. Chim. Ital., 102 (1972) 587.
[28] H.C. Lewis and B.N. Storhoff, Synth. React. Inorg. Metal-Org. Chem., 4 (1974) 467.
[29] F. Calderazzo and D. Vitali, Coord. Chem. Rev., 16 (1975) 13.
[30] F. Calderazzo, D. Vitali and I.P. Mavani, J. Organomet. Chem., 160 (1978) 207.
[31] E.W. Abel and G. Wilkinson, J. Chem. Soc., (1959) 1501.
[32] M.F. Farona and K.F. Kraus, Inorg. Chem., 9 (1970) 1700.
[33] L.A. Paquette, P.v.R. Schleyer, W. Bauer, M.R. Sivik, M. Bühl and M. Feigel, J. Am. Chem. Soc., 112 (1990) 8776.
[34] L.A. Paquette, P.v.R. Schleyer, W. Bauer, M.R. Sivik and D. Friedrich, Organometallics, 11 (1992) 4178.
[35] J.A. Gladysz, F. Agbossou, E.J. O'Connor, C.M. Garner, N.Q. Mendez, J.M. Fernandez, A.T. Patton and J.A. Ramsden, Inorg. Synth., 29 (1992) 211.
[36] A. Salzer, H.W. Bosch, H.U. Hund and D. Nietlispach, Organometallics, 11 (1992) 2087.
[37] N.G. Connelly, P.T. Draggett, M. Green and T.A. Kuc, J. Chem. Soc., Dalton Trans., (1977) 70.
[38] W.P. Fehlhammer, W.A. Herrmann and K. Öfele, in G. Brauer (ed.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke, Stuttgart, 1981, Bd. 3, p. 1951.
[39] W.P. Fehlhammer, W.A. Herrmann and K. Öfele, in G. Brauer (ed.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke, Stuttgart, 1981, Bd. 3, pp. 1826-1827.
[40] H. Müller, in G. Brauer (ed.), Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke, Stuttgart, 1981, Bd. 3, p. 1625.
[41] W. Hieber and H. Schulten, Z. Anorg. Allg. Chem., 243 (1939) 167.
[42] J.G. Sharefkin and H. Saltzman, Org. Synth. Coll. Vol., 5 (1973) 658.
[43] J.G. Sharefkin and H. Saltzman, Org. Synth. Coll. Vol., 5 (1973) 600.

[^0]: ${ }^{*}$ For Part I, see Ref. [20]. Dedicated to Prof. Dr. P. Paetzold on the occasion of his 60th birthday.

 * Corresponding author.

